Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.

Identifieur interne : 001E57 ( Main/Exploration ); précédent : 001E56; suivant : 001E58

Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.

Auteurs : Anne M. Borland [Royaume-Uni, États-Unis] ; Stan D. Wullschleger [États-Unis] ; David J. Weston [États-Unis] ; James Hartwell [Royaume-Uni] ; Gerald A. Tuskan [États-Unis] ; Xiaohan Yang [États-Unis] ; John C. Cushman [États-Unis]

Source :

RBID : pubmed:25366937

Descripteurs français

English descriptors

Abstract

Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate.

DOI: 10.1111/pce.12479
PubMed: 25366937


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.</title>
<author>
<name sortKey="Borland, Anne M" sort="Borland, Anne M" uniqKey="Borland A" first="Anne M" last="Borland">Anne M. Borland</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU</wicri:regionArea>
<wicri:noRegion>NE1 7RU</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407</wicri:regionArea>
<wicri:noRegion>37831-6407</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wullschleger, Stan D" sort="Wullschleger, Stan D" uniqKey="Wullschleger S" first="Stan D" last="Wullschleger">Stan D. Wullschleger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Climate Change Science Institute, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Climate Change Science Institute, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301</wicri:regionArea>
<wicri:noRegion>37831-6301</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weston, David J" sort="Weston, David J" uniqKey="Weston D" first="David J" last="Weston">David J. Weston</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407</wicri:regionArea>
<wicri:noRegion>37831-6407</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hartwell, James" sort="Hartwell, James" uniqKey="Hartwell J" first="James" last="Hartwell">James Hartwell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Plant Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB</wicri:regionArea>
<wicri:noRegion>L69 7ZB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407</wicri:regionArea>
<wicri:noRegion>37831-6407</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaohan" sort="Yang, Xiaohan" uniqKey="Yang X" first="Xiaohan" last="Yang">Xiaohan Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407</wicri:regionArea>
<wicri:noRegion>37831-6407</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cushman, John C" sort="Cushman, John C" uniqKey="Cushman J" first="John C" last="Cushman">John C. Cushman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV, 89557-0330, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV, 89557-0330</wicri:regionArea>
<wicri:noRegion>89557-0330</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25366937</idno>
<idno type="pmid">25366937</idno>
<idno type="doi">10.1111/pce.12479</idno>
<idno type="wicri:Area/Main/Corpus">001F42</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F42</idno>
<idno type="wicri:Area/Main/Curation">001F42</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001F42</idno>
<idno type="wicri:Area/Main/Exploration">001F42</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.</title>
<author>
<name sortKey="Borland, Anne M" sort="Borland, Anne M" uniqKey="Borland A" first="Anne M" last="Borland">Anne M. Borland</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU</wicri:regionArea>
<wicri:noRegion>NE1 7RU</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407</wicri:regionArea>
<wicri:noRegion>37831-6407</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wullschleger, Stan D" sort="Wullschleger, Stan D" uniqKey="Wullschleger S" first="Stan D" last="Wullschleger">Stan D. Wullschleger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Climate Change Science Institute, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Climate Change Science Institute, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301</wicri:regionArea>
<wicri:noRegion>37831-6301</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weston, David J" sort="Weston, David J" uniqKey="Weston D" first="David J" last="Weston">David J. Weston</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407</wicri:regionArea>
<wicri:noRegion>37831-6407</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hartwell, James" sort="Hartwell, James" uniqKey="Hartwell J" first="James" last="Hartwell">James Hartwell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Plant Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB</wicri:regionArea>
<wicri:noRegion>L69 7ZB</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407</wicri:regionArea>
<wicri:noRegion>37831-6407</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Xiaohan" sort="Yang, Xiaohan" uniqKey="Yang X" first="Xiaohan" last="Yang">Xiaohan Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407</wicri:regionArea>
<wicri:noRegion>37831-6407</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cushman, John C" sort="Cushman, John C" uniqKey="Cushman J" first="John C" last="Cushman">John C. Cushman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV, 89557-0330, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV, 89557-0330</wicri:regionArea>
<wicri:noRegion>89557-0330</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agriculture (methods)</term>
<term>Agriculture (trends)</term>
<term>Climate Change (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Forestry (methods)</term>
<term>Genetic Engineering (methods)</term>
<term>Plant Breeding (methods)</term>
<term>Populus (MeSH)</term>
<term>Salix (MeSH)</term>
<term>Trees (genetics)</term>
<term>Trees (metabolism)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agriculture (méthodes)</term>
<term>Agriculture (tendances)</term>
<term>Amélioration des plantes (méthodes)</term>
<term>Arbres (génétique)</term>
<term>Arbres (métabolisme)</term>
<term>Arbres (physiologie)</term>
<term>Changement climatique (MeSH)</term>
<term>Génie génétique (méthodes)</term>
<term>Populus (MeSH)</term>
<term>Salix (MeSH)</term>
<term>Science forêt (méthodes)</term>
<term>Sécheresses (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arbres</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Agriculture</term>
<term>Forestry</term>
<term>Genetic Engineering</term>
<term>Plant Breeding</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arbres</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Agriculture</term>
<term>Amélioration des plantes</term>
<term>Génie génétique</term>
<term>Science forêt</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="tendances" xml:lang="fr">
<term>Agriculture</term>
</keywords>
<keywords scheme="MESH" qualifier="trends" xml:lang="en">
<term>Agriculture</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Climate Change</term>
<term>Droughts</term>
<term>Ecosystem</term>
<term>Populus</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Changement climatique</term>
<term>Populus</term>
<term>Salix</term>
<term>Sécheresses</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25366937</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>11</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>38</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2015</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.</ArticleTitle>
<Pagination>
<MedlinePgn>1833-49</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.12479</ELocationID>
<Abstract>
<AbstractText>Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate. </AbstractText>
<CopyrightInformation>© 2014 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Borland</LastName>
<ForeName>Anne M</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>School of Biology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wullschleger</LastName>
<ForeName>Stan D</ForeName>
<Initials>SD</Initials>
<AffiliationInfo>
<Affiliation>Climate Change Science Institute, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6301, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weston</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hartwell</LastName>
<ForeName>James</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Sciences, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tuskan</LastName>
<ForeName>Gerald A</ForeName>
<Initials>GA</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Xiaohan</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6407, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cushman</LastName>
<ForeName>John C</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Biology, MS330, University of Nevada, Reno, NV, 89557-0330, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/F009313/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000383" MajorTopicYN="N">Agriculture</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
<QualifierName UI="Q000639" MajorTopicYN="N">trends</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057231" MajorTopicYN="Y">Climate Change</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016468" MajorTopicYN="N">Forestry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005818" MajorTopicYN="N">Genetic Engineering</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069600" MajorTopicYN="N">Plant Breeding</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">CO2</Keyword>
<Keyword MajorTopicYN="N">carbon reactions</Keyword>
<Keyword MajorTopicYN="N">drought</Keyword>
<Keyword MajorTopicYN="N">global climate change</Keyword>
<Keyword MajorTopicYN="N">photosynthesis</Keyword>
<Keyword MajorTopicYN="N">stomata</Keyword>
<Keyword MajorTopicYN="N">water relations</Keyword>
<Keyword MajorTopicYN="N">water-use efficiency</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>06</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>10</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>10</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25366937</ArticleId>
<ArticleId IdType="doi">10.1111/pce.12479</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Borland, Anne M" sort="Borland, Anne M" uniqKey="Borland A" first="Anne M" last="Borland">Anne M. Borland</name>
</noRegion>
<name sortKey="Hartwell, James" sort="Hartwell, James" uniqKey="Hartwell J" first="James" last="Hartwell">James Hartwell</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Borland, Anne M" sort="Borland, Anne M" uniqKey="Borland A" first="Anne M" last="Borland">Anne M. Borland</name>
</noRegion>
<name sortKey="Cushman, John C" sort="Cushman, John C" uniqKey="Cushman J" first="John C" last="Cushman">John C. Cushman</name>
<name sortKey="Tuskan, Gerald A" sort="Tuskan, Gerald A" uniqKey="Tuskan G" first="Gerald A" last="Tuskan">Gerald A. Tuskan</name>
<name sortKey="Weston, David J" sort="Weston, David J" uniqKey="Weston D" first="David J" last="Weston">David J. Weston</name>
<name sortKey="Wullschleger, Stan D" sort="Wullschleger, Stan D" uniqKey="Wullschleger S" first="Stan D" last="Wullschleger">Stan D. Wullschleger</name>
<name sortKey="Yang, Xiaohan" sort="Yang, Xiaohan" uniqKey="Yang X" first="Xiaohan" last="Yang">Xiaohan Yang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E57 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001E57 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25366937
   |texte=   Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25366937" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020